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Relation Between the Complexity and the

Probability of Large Nunbers

Peter Gacs

Computer Science Department
Stanford University

Stanford, California 94305

September, 1979

Abstract.

H(x) , the negative logarithm of the apriori probability M(x) ,

is Levin's variant of Kolmogorov's ccmplexity of a natural number x

Let a(n) be the minimum complexity of a number larger than n,

s(n) the logarithm of the apriori probability of obtaining a number

larger than n . It was known that

s(n) < a(n) < s(n) + H(Ls(n)J)

t We show that the second estimate is in sane sense sharp.
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S-Ite-pM ction in whole or in part is permitted for any purpose of the
United States goverment.



Relation Between the Complexity and the

Probability of Large MNwbers

Peter Gacs

Let T(p) be a partial recursive function defined over binary

sequences with values among the natural nubers which is prefixless:

(a) If p 1  is a beginning segment of p2  and T(p 1  is defined

then T(p2 ) - T(p1 )

and optimal:

(b) for any other prefixless p.r. function TV there is a sequence

p such that T(pq) - T'(q) for all q.

Let 1(p) denote the length of the sequence p *Levin introduced

* the comaplexity

H(x) = min(f(p): T(p) - x

as a useful variant of Ko].mogorov's complexity. See e.g. [1], also

Chaitin [2), Gacs [3].

We denote by T(p;t) a computable "approximation" of T(p)

on some Turing machine computing T(p) , T(p;t) is T(p) if T(p)

is computed within time t , undefined otherwise. We write

H(x;t) -min(I(p): T(p;t) - x

M(x) 2 2 -H(X) M(x;t) . 2 -H(x;t)

s(n) - ~lo( M(i))
In

ag(n) =min i> n H(i)
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a(n) and s(n) , two extremely slowly (slower than ary unbounded,

recursive function) growing functions, are closely related. It is known

that

(1) s(n) < a(n) < s(n) + H(Ls(n)J

where -< and X denote inequality and equality to within an additive,

< and o to within a multiplicative constant.

The first inequality is trivial, the second one is well-known (see

e.g. [41). A hint to the proof: to find a number > n , we have only

to know 2-8(O )  to within an error term 2 -s(n)

We will show that the second estimate in (1) is sharp.

Theorem. Let g(n) be any positive, monotone recursive function such that

(2) 2-g(n) =

n

Then a(n) > s(n)+ g(s(n)) infinitely often.

Proof. It is well-known (see e.g. [3]) that, if p(n;t) is a computable

nonnegative rational function over pairs of natural numbers, monotone in t

and Z p(n;t) < 1 , i.e., for each t , k(n;t) is a semimeasure, then
n

p(n;t) < M(n).

put

s(n;t) = Z M(i;t)
i>n

sp(n;t) = p I (i;t)
i>n

, j.

!3
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m(k;t) = ma xn: s(n;t) < k)

m (b;t) = max(n;s (n;t) < k]

The construction depends on nk , a fast-growing recursive sequence.

We will see at the end of the proof, how we should choose it in dependence

of g

Let p(n;o) . 0

Suppose that p(n;t) is already constructed. Put

k(t) maxfk > -log(l-s(;t)): ie [nk_.l, nkl1

(31 (m (i -g~il;tl;t) > i]

Put n(t) = nk(t) • Let J(t) = maxcj: p(j;t) >0O . Put

lk(j(t)+l;t) = 2 -n(t)

P(j;t+l) = P(J;t) for j i j(t)

We will show that there are infinitely many i's such that for almost

all t , (3) holds.

This implies, of course, that

a(P(i-g()) > i

That is, for some n , with

i-g(i) > s (n)

a(n) > i > s (n)+g(i) _ s(n)+g(i) _>s(n)+g(s(n))

and the theorem will be proved.

Suppose that, on the contrary, there is a largest i0 among the i

such that (3) holds for almost all t and a least t such that (3) holds
0()

p.for i0  and all t >t.

0it
*' .,



Under the above assumptions,

P (O;t) -~ 1

Therefore 
r n t

t 
t 2 n t

t-t

B(t 1,t 2P ko) [2 ! -(2t: t e [tt 2] k(t) =kol

qLemma. There exists a triple (k0j,t,) with ko k(t0 ),

t 2  t ?to such that

(a) k(t) Ic0  for t rzt 1 3-'t2 ]

(b) 2 < A(t1, 2  3 B (tt 2,ko)

Proof. For some t 0 (k(t0), 0 ) will satisfy, (a) and the first

inequality of (b).

Let us say that (kOtl-,t 2 ) :S (k'ti'tY if k6 : 1O ' 1: -, 2S -<

*Let (kot 1,t.) be a minimal triple < (k(t 0 ),t 0 ,t 0) , among the

triples satisfying (a) and the first part of (b).

(A) For t~ e [t 1 ,t 2 ] we have k(t) = Ic0 , otherwise the triple is not

minimal.

For similar reasons we have

(B) If t 1 <ti :5t St 2  and k(t) > k in [tieti] then

then B(t' t') < 2-n
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Therefore we have

A(t , t2) < B(t, t 2 ,Pk ) + (1+ #te [t, t 2]. k(t) ko].

2B tl, t2P k0 ) + 2-n C

We concentrate now on a triple (k, tl, t 2 ) < (k(to),to, tO)

satisfying (a) and (b).

Notation. For i [nkln k ] put

Ei  t[tlt 2 ]: an H(n;t) <i,H(n;t) < H(n;t-1)]

We now estimate s i = # Ei  from below (see (5)). Let us write

*E = fti1, ti 2 ,...,t i s . , where tij < tij+ l o Put ti0 = tl-I ,

t is+1 = t2 . Let uij = the last t in [tijl, t1ij+l] (if any) with

k(t) = k . If there is no one, uij = tij.

ui I

Let ij = 2-n(t) ' = -log .ij Then by our
t = t ij+l* ii

algorithm we have
*

' (m(i -gi)) ; u:Lj-1) <_ i

On the other hand, by the definition of uiJ

! a(j(tii+l) ;uii-1) > i .

I Therefore we have

xii =  s(0 tii+l) uij -1) g)

(4) aij <-1 "+ g(i) •
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Ori the other hand,

t

2
- 'k 1 < 2 -n(t) = E 2 -n(t) + Cr + B(t , t 2 ,k)

t=to t C

< .2 + (si+1 )2-i+ g(i) + B(tl,t2,k)

Using (b) of the Lemma,

2.2-n-1 < (si+l)(2- +2-+9()) 2(si+l)(2-1+ (1)

Hence

*i 2"-n1 +i- g(i)S. >-.2 -1 ,

that is, for i - g(i) > nk-. +2

(5) si > 1 . 2-n_1+i-g(i)

Put mk = min{i: i -g(i) > nk-l+ 2)

We have

S i nk
1 > s(o;t) - s(o;t 1 ) > .2- . si) + 2-in

2) i_- ( - "] m

t nkiI
i "2"i si" 2 -""s i

> 2 •* s > 1.2 •

i =mk $mk

If nk is chosen far enough from nk 1 , this will obviously lead

to a contradiction. 0
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